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 Traditionally, students’ mathematics errors and misconceptions were viewed from a 

negative perspective, taken as indicative of the absence of knowledge/meaning.  

Constructivist theory offers a more positive perspective, suggesting that errors are an 

individual’s current interpretation of a mathematical situation and thus are indicative of 

knowledge.  Error pattern research has prompted new approaches to intervention, with 

errors/misconceptions increasingly being used as the beginning point for intervention.  The 

success of such approaches has been mixed with error recidivism being a common 

occurrence.  A further dimension to this field is offered by Conceptual Mediation (CM) 

(Lyndon, 1995).  The theoretical background of CM states that accelerated forgetting of new 

material occurs if it conflicts with pre-existing knowledge.  Errors/misconceptions therefore 

are retained even in light of rational argument.  In this paper, error pattern research and 

conceptual change programs are briefly summarised, followed by a discussion of the 

psychological basis of CM. 

 

Errors and Error Pattern Research 

The Contribution of Error Pattern Research 

 The study of students’ mathematical errors/misconceptions has significantly 

influenced the field of mathematics assessment and intervention, providing alternative 

perspectives as to what error patterns indicate (e.g., Ashlock, 1994; Ashlock, Johnson, Wilson 

& Jones, 1983).  Traditionally, students who made errors in their work were regarded as 

suffering from some type of learning disability (e.g., Kephart, 1960), and that they made 

errors because they lacked knowledge of “correct” algorithms.  Such a deficit model of error 

production suggested that the student exhibiting the error had learned nothing as a result of 

the initial teaching effort. 

 Error pattern research has revealed that, contrary to the belief that all errors are 

random and careless, they occur regularly and consistently (Brumfield & Moore, 1985; Cox; 

1975).  Consistency in production of errors tends to negate such a view that errors are 

indicative of a lack of knowledge.  According to Ashlock (1994), the fact that errors can be 

systematic over certain mathematical computations indicates that they are habitual, automatic 

responses to specific stimuli.  In contrast to random, careless errors, habitual errors are not 

self-detected nor self-corrected; they are conceptual and learned.  The implication of errors as 

conceptual and learned knowledge provides an alternative perspective on what errors indicate 

about a student’s mathematics knowledge.  Errors are thus indicative of the presence rather 

than the absence of knowledge.  The notion of mathematics learning disabilities suggests a 

difficulty in acquiring knowledge.  Consistency in errors indicates that the student is, in fact, 

capable of learning.  From this perspective, what a student has learned is merely an incorrect 

way of doing things.  The student has somehow acquired a learned disability rather than a 

learning disability (Ashlock, 1994).   

 Categories of students’ (and adults) patterns of mathematical error have been well 

documented over many mathematical domains.  For example, Ashlock (1994) provided a 

comprehensive historical summary of error pattern research, focussing particularly on 

identification of error patterns in computation.  Some relatively recent studies have reported 
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on evidence of consistency in students’ (and adults) errors in mathematical skill calculation 

and conceptual understanding in other mathematical topics, such as Year 8 students’ 

understanding of parallel lines (Mansfield & Happs, 1992), Year 5 students’ understanding of 

ratio and proportion (Fong, 1995), Year 10 student’s understanding of circle geometry 

(Borassi, 1994), high school students’ skill in factoring polynomials (Rauff, 1994), secondary 

school teachers’ concepts of group theory (Dubinsky, Dautermann, Leron, & Zazkis, 1994). 

 The value of error pattern research can be seen to operate on at least three levels.  

Primarily, the accuracy of the diagnosis will enable specific intervention strategies and 

activities to be developed, with a greater chance of successfully helping the student overcome 

the learning difficulty and progress towards mathematical achievement.  At a second level, 

error pattern research has pedagogic implications.  If it is known the various errors students 

develop in relation to particular mathematical topics, teachers can develop programs of 

instruction in an effort to possibly prevent the development of such errors (Maurer, 1987; 

Stefanich & Rokusek, 1992).  The creation of appropriately rich learning environments can 

thus be created from an informed position with greater teacher awareness of possible student 

misconceptions that may arise from the teaching experience.  The study of systematic errors 

benefits teaching in that sources can be determined and learning environments developed that 

inhibit errors (Behr & Harel, 1990).  At a third level, error pattern research has implications 

for teacher training programs.  For example, Thipkong and Davis (1991) alerted educators to 

the influence of teacher errors and misconceptions upon their teaching, and thus on student 

learning.  In their research, they identified preservice teachers’ misconceptions in interpreting 

and applying decimals, noting that the misconception “multiplication makes bigger, division 

makes smaller” extremely prevalent.  They suggested that if teachers are aware of their own 

errors and misconceptions in particular mathematical topics, great care will need to be taken 

so that such errors and misconceptions are not transferred to learners.  This research serves to 

thus inform mathematics teacher training programs. 

 

Errors as Constructed Knowledge 

 Constructivist theories of learning state that knowledge is actively constructed by the 

individual.  Of constructivism, Confrey (1990a) stated, “constructivism can be described as 

essentially a theory about the limits of human knowledge, a belief that all knowledge is 

necessarily a product of our own cognitive acts” (p. 108).  Interpretation of mathematical 

errors and misconceptions as knowledge, then, is consistent with constructivist learning 

theory.  Errors are personal constructions in the mind of the individual, and thus are 

meaningful, and make sense, to the individual (Confrey, 1990b; Rauff, 1994).  They are an 

individual’s interpretation of a mathematical situation at the time.  Confrey (1990a) stated 

that the work of Piaget served to highlight the concept of knowledge as mental constructions, 

as encapsulated in the following paragraph:   

...a child may see a mathematical or scientific idea in quite a different way 

than it is viewed by an adult who is expert or experienced in working with the 

idea.  These differences are not simply reducible to missing pieces or absent 

techniques or methods; children’s ideas also possess a different form of 

argument, are built from different materials, and are based on different 

experiences.  Their ideas can be qualitatively different, which can sometimes 

mean that they make sense only within the limited framework experienced by 

the child and can sometimes mean they are genuinely alternative.  To the 

child, they may be wonderfully viable and pleasing.  (p. 108-109) 

 Confrey’s statements provide a clear picture of active learners operating on and 

interpreting mathematical and scientific situations within their own mental framework.  

Further, Borassi (1994) provided a comprehensive description of the growth of mathematical 
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knowledge at a societal level to reflect mathematical knowledge growth at an individual level 

in terms of constructivism.  Citing the philosophical contributions of explanatory theories of 

mathematical knowledge, including Dewey, who suggested that knowledge is a process of 

inquiry motivated by doubt; Kuhn, who described knowledge as oscillation between normal 

science and scientific revolution, where unacceptable results and unsolvable problems leads to 

new perspectives; and Lakatos, who stated that mathematical knowledge occurs through a 

dialectic process of proofs and refutations; Borassi stated that mathematical knowledge can be 

seen to be a constructed body of knowledge, changing and evolving over time.  In light of this 

philosophical analysis of the construction of mathematical knowledge through history, 

Borassi likens the growth of mathematical knowledge in students.  He described a view of 

learning “as a generative process of meaning making that is personally constructed, informed 

by the context and purposes of the learning activity itself, and enhanced by social 

interactions” (p. 167).  In terms of errors and misconceptions, Borassi’s discussion shows 

that, at certain times in history, mathematical knowledge was erroneous, but was the socially 

constructed mathematical knowledge of the time.  Mathematical errors and misconceptions, 

therefore, can be regarded as constructed knowledge.  As Confrey (1990a) argued, “students 

are always constructing an understanding for their experiences...Students’ misconceptions, 

alternative conceptions and prior knowledge provide evidence of this constructive activity” 

(p. 112).  In a similar vein, Rauff (1994) described students’ mathematical knowledge as 

constructed over time; students’ mathematical knowledge is based on their beliefs, and errors 

and misconceptions stem from their beliefs.  According to Rauff, errors are logically based 

from within the student’s “belief-set” and are thus meaningful and logical to the owner. 

 

The Development of Consistent Errors 

 In relation to the development of consistent patterns of error, Resnick and others 

(Nesher, Leonard, Magone, Omanson, & Peled, 1989) provided a description of how students 

develop patterns of error in computation, which can be seen to fit within a constructivist 

framework.  Resnick et al. stated that “errors derive from students’ attempts to integrate new 

material that they are taught with already established knowledge” (p. 25).  In further 

explaining this process, Resnick et al. suggested that within the mathematics classroom, 

teachers provide various examples of mathematical procedures for students to learn and 

practise, but that within this classroom situation, teachers can only provide a certain number 

of examples.  When students are faced with computation exercises that have not been 

explained by the teacher, students must decide for themselves how to proceed.  According to 

Resnick et al., as a result of “making these inferences and interpretations, children are very 

likely to make at least temporary errors.  Errorful rules are a natural result of children’s efforts 

to interpret what they are told and go beyond the cases actually presented...[Thus] errorful 

rules are active constructions” (p. 25).  Errorful rules therefore can be seen as interpretations 

of the child’s view of the mathematical situation at the time. 

 Brown & Van Lehn (1982) also provided an explanation for the development of error 

patterns in which errors can be regarded as active constructions.  They described the 

development of error patterns in terms of computer language with students’ errors labelled as 

“bugs”, and the process through which these bugs develop as “Repair Theory”.  Repair 

Theory states that when learners are confronted with tasks on which they are unsure of how to 

perform (on which they have become “stuck”), they use a simple “repair” tactic which 

enables them to produce a solution and become “unstuck”.  In this way, repairs occur as a 

result of learners’ choosing alternative solution paths in order to produce answers.  Repair 

Theory also states that if the repair is erroneous and is left unchecked, the incorrect repair, 

through repetition and practise, will become a habit produced in response to appropriate 

stimuli. The repair thus becomes a consistent error; that is, a “buggy” solution.  Encompassed 
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within this theory is “bug migration” to explain the fact that some students take several 

alternative solution paths in response to the one stimulus, hence switching between bugs.  

Succinctly, Repair Theory is an explanatory theory for the development and consistency of 

erroneous algorithmic procedures (buggy solutions), and the existence of several incorrect 

procedures for the same stimulus (bug migrations).  [Bug migration does, however have 

implications for accurate diagnosis of consistency in errors.  Some procedures yield correct 

solutions, thus confirming the legitimacy of the buggy procedure in the mind of the student, 

and hence making remediation of that error pattern all the more difficult (Ashlock, 1994)]. 

 

Overcoming Mathematical Errors and Misconceptions 

Reteaching Approaches 

 For the remediation of systematic errors, suggested approaches predominantly appear 

to be good reteaching programs which emphasise the close linkage of the symbolic 

representation with the concrete/pictorial representation in order to promote conceptual 

understanding (e.g., Ashlock, 1994; Booker, Irons & Jones, 1980; Resnick, 1982; J. W. 

Wilson, 1976).  In such approaches it appears that the teacher acknowledges students’ error 

patterns, but they are not overtly referred to in the intervention situation.  This reteaching 

approach has not always resulted in sustained conceptual change and eradication of the error.  

For example, Resnick (1982) in focusing on students’ computational procedures for 

subtraction algorithms found that, as a result of intervention, the students in the experimental 

group, with intensive instruction using concrete materials and place-value games, performed 

only marginally better than students in the control group.  Of this study, Resnick (1992) 

stated: 

Despite the intensive personal instruction, only half the children taught learnt 

the underlying semantics well enough to construct an explanation of why the 

algorithm worked and what the marks represented.  More surprisingly, even 

children who did give evidence of good understanding of the semantics often 

reverted to their buggy calculation procedures once the instructional sessions 

were over.  (p. 394) 

 Similarly, Connell and Peck (1993) found that, despite the use of concrete materials, 

students’ prior knowledge interfered with their ability to perform computations correctly; the 

old, erroneous procedures continually resurfaced.  Other studies specifically designed to help 

children overcome errors in computation have reported that students’ old error patterns 

reemerge despite the intensity of the remedial activities (e.g., Bourke, 1980; Resnick, 1982; 

Wells, 1982; N. Wilson, 1982).  It is acknowledged however, that particular studies have 

reported that the use of “good teaching” strategies will help students overcome error patterns 

in computation (e.g., Stefanich & Rokusek, 1992), and that students errors may naturally 

correct over time (Hennessy, 1993). 

 

Current Trends in Mathematics Intervention 

 Alternative programs have been described in the literature which appear to actively 

use students’ error patterns/misconceptions as a focal point for intervention and conceptual 

change.  Such programs include error pattern analysis and intervention (e.g., Ashlock, 1994; 

Gable, Enright & Hendrickson, 1991); cognitive conflict and conflict teaching (Bell, 1986-

87); using errors as springboards for enquiry (Borassi, 1994); belief-based teaching (Rauff, 

1994); teaching by analogy (e.g., Tirosh, 1990).  In the following section, a summary of each 

of these alternatives to traditional mathematics intervention programs is presented. 

 Correcting error patterns in computation.  A comprehensive instructional program for 

overcoming students’ error patterns in computation has been developed by Ashlock (1994) 

where specific activities are suggested to help students overcome particular errors.  For 
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example, to assist the student who responds to written addition exercises in the following 

manner:   

   26  60  74 

            +  3          + 24           +  5 

   11  84  16 

  (taken from Ashlock, 1994, p. 133) 

Ashlock suggested the provision of place value identification games, using base ten blocks or 

paddle pop sticks (for bundling into tens and ones) to represent each addend in the exercise, 

and the drawing in of place columns to display the tens and ones in each of the numbers.  The 

suggested activities aimed to build the student’s understanding of place value and to 

demonstrate the illegitimacy of his/her solution process.  The focus can be seen to be on the 

particular computation in which the error pattern surfaced. 

 A much more prescriptive approach to correction of error patterns has been offered by 

Gable, Enright, & Hendrickson (1991).  They described a three-phase model of analysis, 

intervention, and evaluation.  In their approach, the first phase involves determining the 

consistency of the error and includes interviewing the student.  In the second phase 

intervention begins, and involves the three stages of (i) demonstration of the correct 

algorithm, (ii) selection of “the error groups and appropriate corrective strategy” (p. 7), and 

(iii) practise of the new algorithm.  The appropriate corrective strategy is determined through 

categorising the nature of the error as either conceptually-oriented or structurally-oriented.  

As Enright et al. stated, “conceptually-oriented error patterns, such as regrouping errors and 

place value problems, require a manipulative, hands-on corrective strategy.  In contrast, error 

patterns such as process subtraction, placement, and attention to sign can be corrected using 

graphically oriented strategies including the use of flowcharts or colour coding to structure 

the work page” (p. 7).  In this approach, phase two is characterised by considerable practise of 

the new/correct computational procedure.  In phase three, the evaluative phase, transfer of the 

skill to the regular classroom is evaluated.  This phase has two stages: (i) the impact of the 

new skill on student performance is evaluated with the student, and (ii) the practise and 

maintenance of the skill is continued in the classroom context.  The three phase model can be 

seen to be cyclic, and as Enright et al. claim, can be used in the regular classroom as it 

integrates within a curriculum-based assessment and instruction mathematics program. 

 Cognitive conflict and conflict teaching.  Cognitive conflict models of instruction are 

based on the premise that prior inappropriate knowledge serves as a barrier to knowledge 

growth and development, and that this inappropriate knowledge must be confronted (Bell, 

1986-87).  In such teaching situations, the environment is structured so that students’ 

misconceptions will surface as students work on mathematical tasks deliberately developed 

by the teacher for that purpose.  Through discussion in group situations with peers and others, 

students’ misconceptions are brought into the open.  Through discussion, the intention is that 

students will see the impoverishedness of their understandings, and thus conceptual change 

will occur. 

 Conflict teaching appears to be based on acknowledging the power of prior learning.  

However, such an approach does not always result in sustained conceptual change occurring, 

as students’ misconceptions are often in evidence after such conflict exercises (Bell, Swan, 

Onslow, Pratt & Purdy, 1985; Tirosh & Graeber, 1990).  Even though students can see the 

limitations of their own conceptualisation within a particular topic, they can develop and hold 

appropriate concepts without giving up their prior, inappropriate concepts.  The prior-held 

misconception continues to interfere with understanding and forward learning.  This 

phenomenon has been described as due to knowledge compartmentalisation, where two 

conflicting ideas are held as separate entities in the mind (Posner, Strike, Hewson & Gertzog, 

1982; Vinner, 1990).  Posner et al. (1982) suggested that compartmentalisation is a learner’s 
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mechanism for avoiding cognitive conflict and conceptual change.  This perspective suggests 

that human learners actively, though unconsciously, resist cognitive conflict.  As Tirosh 

(1990) stated, “in cognitive psychology, human beings’ desire to eliminate conscious 

inconsistencies in their thinking is regarded as a basic cognitive need” (p. 111). 

 Together with the fact that conflict teaching does not always lead to sustained 

conceptual change, is the fact that conflict teaching requires learners to openly display the 

extent of their inappropriate knowledge so that critical peer review and analysis can occur.  

This calls into question the effect of such an approach on students self-esteem and confidence.  

As Tirosh (1990) cautioned, “the conflict teaching approach includes a stage in which a 

student realises that something in his or her way of thinking is “wrong”.  In certain cases, this 

realisation may actually be detrimental to a student’s confidence or self-esteem” (p. 123). 

 Errors as springboards for inquiry.  Borassi (1985) stated that in the field of diagnosis 

and remediation, errors are regarded in a negative fashion as “signals that something has gone 

wrong in the learning process, and consequently remediation is needed” (p. 1).  He suggested 

that errors should be viewed from a more positive perspective as the means to promote 

students’ thinking about mathematics and thus build mathematical understanding.  Motivated 

by the belief that errors can be used to develop students’ deeper understanding of 

mathematics, Borassi (1994) conducted a teaching experiment focusing primarily on using 

students’ errors for student inquiry.  In his study, he collected students’ written definitions of 

a circle.  He then presented these definitions to other students, after asking them to write their 

own.  The students were required to analyse each definition and compare and contrast it with 

their own definition, thus modifying, rejecting, arguing for, justifying, and so on, certain 

definitions of a circle.  The teacher’s role was to assist the inquiry process, prompting 

students to explain clearly their statements, probing their knowledge of circles, and using this 

to continue the growth of the definition along appropriate lines.  According to Borassi, the 

strategy of using “errors as springboards for inquiry” appeared to not only help students 

change and modify their current conceptions of the mathematical topic under study, but also 

engaged them in “genuine problem solving, mathematical explorations, mathematical 

communication, initiative and ownership in learning mathematics, constructive doubt and 

conflict, and the need to monitor and justify their mathematical activity, as well as more 

humanistic and exciting aspects of mathematics” (p. 199).  Borassi also reported that the 

students’ learning of mathematical content was also increased as a result of the teaching 

experiment, as well as the affective domain of the students, with students feeling more 

positive about the study of mathematics, and their own ability to continue with the study of 

mathematics. 

 Belief-based teaching.  Rauff (1994) suggested that a process of “belief-based 

teaching” can help students overcome inappropriate mathematical procedures, and described 

this in terms of students’ erroneous solutions for factoring polynomials.  In a process similar 

to Borassi (1994), Rauff suggested that, to overcome students’ errors/misconceptions, beliefs 

about particular mathematical procedures must be determined and the teacher’s role is to 

assist the integration of the appropriate mathematical procedures within the student’s belief 

set.  The theoretical stance which underpins his method is that, errors and misconceptions are 

a “student’s belief set” (p. 425), and the development of errors are logical outcomes of the 

belief set.  According to Rauff, “the mathematics teacher who views errors in this way must 

discern the nature of the student’s model and then attempt to modify it appropriately so that 

the student can work from a mathematically sound belief set”(p. 422). 

 In his study, Rauff reported on the relative ease with which some students modified 

their beliefs, and the difficulty of this process experienced by other students which, according 

to Rauff, was dependent upon the nature of the student’s current belief state.  For example, 

one student used a particular strategy to factorise polynomials, which only worked in certain 
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cases.  The student was shown another strategy, but continued to use her own strategy first.  

Over time, the student came to realise that her own strategy was no longer efficient for all 

cases, but used it for the cases in which it yielded the correct solution.  The student’s initial 

belief set was expanded to include the new strategy, as well as her own.  According to Rauff, 

this inclusion of the new strategy was because it “did not entail the removal of any other 

beliefs about factoring” (p. 424).  Rauff summarised belief-based teaching in the following 

statement: 

The focus of this approach into teaching and learning is student belief.  An 

instructor using this approach to teaching factoring begins with asking the 

student to tell him or her what they think about factoring.  The instructor then 

analyses their “buggy” factorisings in light of their beliefs.  The students are 

next shown how their beliefs produce non-equivalent expressions.  Finally, the 

students modify their beliefs appropriately (p. 425). 

 Teaching by analogy.  Teaching by analogy is a teaching approach for building 

students’ conceptual knowledge which has been suggested as an approach for assisting 

students overcome misconceptions (Tirosh, 1990).  The basis of teaching by analogy is that 

the student’s prior knowledge is linked, through analogy, to knowledge being presented by 

the teacher.  The teaching by analogy approach can serve as a means for helping students 

solve analogous tasks, of helping students develop understanding through linking to 

analogous situations, of guiding teaching to link to analogous experiences, thus taking what is 

known and linking to what is new.  In dealing with misconceptions, teaching by analogy 

involves presenting students with tasks that they have previously solved correctly, which are 

analogous to the tasks the student solved incorrectly.  The intention is that the student will see 

the two tasks as analogous, and revise the approach taken for solution.  Thus, students revisit 

a correctly performed task (the anchoring task) in order to change their approach to solving a 

task on which they initially experienced difficulty (the target task).  This approach poses 

challenges for teachers, because as Tirosh (1990) stated, the teacher must “find a suitable 

anchor task, and construct a step, or series of steps, from the anchor task to the target task that 

convinces the student of the validity of the analogy” (p. 123). 

 

Conceptual Mediation 

Overview 

 The Conceptual Mediation program (Lyndon, 1995) provides a further dimension to 

error patterns and intervention research by offering a psychological perspective on the 

development of errors and misconceptions and a reason as to why they are difficult to 

eliminate. The fundamental principle of Conceptual Mediation is the psychological concept of 

proactive inhibition (PI) (Lyndon, 1995; 1989).  According to Lyndon (1995), proactive 

inhibition is responsible for the recurrent appearance of error patterns and misconceptions 

despite intensive intervention programs.  To overcome the effects of PI, Lyndon states, is to 

enter into a process of active “conceptual mediation” (hence the title of the approach) in the 

sense that mediation means “to stand between, to mediate between to reach agreement”.  In 

this program, assisting students overcome their errors and misconceptions is a process of 

actively and overtly mediating between the student’s current knowledge state and the new 

material being presented to the student.  The Conceptual Mediation program suggests 

strategies to assist this process which can be used indirectly by the teacher, or directly by the 

students themselves.  The theoretical basis of Conceptual Mediation and how it relates to the 

field of error patterns and mathematical intervention research is discussed in the following 

sections. 
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Prior Knowledge and Proactive Inhibition 

 Proactive inhibition is an information protection mechanism, which “is produced by 

conflicting associations that are learned prior to learning of the task to be recalled” 

(Underwood, 1966, p. 564).  Underwood suggested that, when a person is asked to give a 

response to a stimulus that differs from the response the person usually gives, the brain can 

only do so with great difficulty.  Underwood provided the following example to demonstrate 

proactive inhibition in practise: 

 If we are told that:  2 x 2 now is 11 

     8 - 4 now is 1 

    3 + 3 now is 27 

we can imagine the difficulty we would have in remembering and applying 

this new information.  Interference, indeed frustration might well occur.  (p. 

516) 

Further, Baddeley (1990) stated that proactive interference (inhibition) occurs when “new 

learning is disrupted by old habits” (p. 40).  Baddeley provided the following as an example 

of proactive inhibition:  “Being taught that C means “caldo” which means hot, but none the 

less ‘forgetting’ and turning the wrong tap would be an instance of proactive interference” (p. 

40).  Similarly, of proactive inhibition, Houston (1991) stated: 

Proactive inhibition is not a theory or an explanation.  It is a fact, an important 

one.  It refers to the enormous amount of forgetting that can be attributed to 

the interfering effects of prior learning.  The more we learn, or store, the more 

susceptible we are to this type of interference.  (p. 235) 

 Proactive inhibition then, as a mechanism for protecting knowledge, is activated when 

new learning conflicts with prior learning.  In situations where prior learning conflicts with 

current learning, old learning will interfere with recall of the new learning.  The need for such 

a mechanism is apparent, as it can be seen that without such an inbuilt knowledge protection 

system, the human mind would be in a constant state of confusion; a person’s knowledge base 

would be changing continually in the face of new incoming information.  It can also be seen 

that the existence of a knowledge protection system is a two-edged sword, with all prior 

knowledge, correct or otherwise, being protected from change.  The implications of proactive 

inhibition for intervention in mathematics are immense.  Remediation of learning difficulties 

in mathematics typically requires students to change their response to a particular stimulus, be 

it an automatic response to a number fact, a completion of an algorithmic procedure, or a 

conceptualisation of a mathematical topic.  The teacher is providing the same stimulus, but is 

requiring the student to give a new response that differs to the way the student responded 

previously to that stimulus.  In terms of proactive inhibition, the enormity of such a request is 

realised, and is exemplified by the examples described above. 

 As previously stated, constructivist views of learning state that errors/misconceptions 

are knowledge (e.g. Borassi, 1994; Confrey, 1990a; 1990b; Rauff, 1994).  

Errors/misconceptions are thus indicative of the presence, not the absence, of knowledge.  In 

terms of diagnosis and intervention, the problem is dealing with knowledge, rather than 

providing learning experiences to “fill-the-gaps” or “link” knowledge as would be wont in an 

“absence of knowledge” perspective.  Acknowledging the mechanism of PI as a part of the 

human mind, PI can be seen to serve as protection of errors/misconceptions from change.  

The role of PI is simply to prevent the cognitive conflict.  As Tirosh (1990) suggested, 

avoidance of mental turmoil is the natural tendency of the human mind.   

 In view of PI as merely a knowledge protection mechanism, it can be seen that PI 

cannot determine appropriate knowledge from inappropriate knowledge, therefore all 

knowledge will be protected by PI.  Psychological research studies have shown that it is 

initially learned knowledge which is more powerfully retained in memory over subsequent 
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learning (e.g. refer to Baddeley, 1990; Eysenck, 1977).  The mathematics remediation 

literature has repeatedly stated that once acquired, students’ errors, misconceptions and 

alternative conceptions are extremely difficult to overcome (e.g., Confrey, 1990a; 1990b; 

Graeber & Baker, 1991; Fischbein, 1987), thus the need for carefully structured, planned and 

organised initial instruction is of paramount importance (Connell & Peck, 1993).  

Acknowledging the influence of PI within the intervention situation provides an explanatory 

theory for the persistence of errors/misconceptions.   

 To overcome the inhibitory influence of PI over knowledge change, a specific strategy 

is an integral element of Conceptual Mediation.  The strategy is called Old Way/New Way 

(O/N).  The essence of the O/N procedure is upon bringing the learner’s “old way” to a 

conscious level and exchanging it for a “new way” by means of discrimination learning, 

followed by practise with the correct “new way”.  There are four steps to O/N, beginning with 

reactivation of the error memory, where the error/misconception is recalled, then labelling and 

offering an alternative, where the error/misconception is labelled the “old way”, and a “new 

way” is shown.  In the third step, discrimination, the difference between the “old way” and 

the “new way” is discriminated a total of five times.  In the fourth step, generalisation, the 

new way is generalised and practised in various situations.  The O/N method has been 

described in detail elsewhere (see Lyndon, 1989).  

 Analysis of the steps in O/N reveals that the student is required to repeat the “old way” 

a total of five times.  Such an approach is contrary to a perception that reactivation of the 

error pattern will only serve to strengthen that error pattern.  This perception is evident in the 

words of Gagne (1983) who stated that, “to make students fully aware of the nature of their 

incorrect rules before going on to teach correct ones...seems to me...is very likely a waste of 

time” (p. 15).  Gagne proposed that to overcome errors is to aim for “extinction” (in 

psychological terms) of that error, as suggested by the following comment: “The effects of 

incorrect rules of computation, as exhibited in faulty performance, can most readily be 

overcome by deliberate teaching of correct rules...This means that teachers would best ignore 

the incorrect performances and set about as directly as possible teaching the rules for correct 

ones” (p. 15).  In the context of the O/N theory, the error is habitual, and more practise will 

not serve to make it any harder to eliminate. 

 The O/N procedure shares similarities with other procedures for dealing with 

errors/misconceptions, as described in previous sections, particularly those presented by 

Borassi (1994), Gable, Enright and Hendrickson (1991), and Rauff (1994) but its method is 

more prescriptive.  The key element in the O/N strategy is the active and overt discrimination 

of differences between the student’s knowledge and the mathematical knowledge presented 

by the teacher.  O/N appears to be a direct means to deal with personal knowledge or an 

individual’s belief system (e.g., Confrey, 1990a; Rauff, 1994) protected from change by PI. 

Conceptual Mediation and Metacognition 

 When using O/N for the purpose of overcoming systematic computational errors, O/N 

can be regarded as a metacognitive strategy applied to a particular cognitive strategy; it is 

cognitive in that it is task specific, but simultaneously, it is metacognitive as it is a highly 

generalisable strategy applicable to a wide range of situations.  O/N can be presented to 

students in all three training modes suggested by Brown and Palinscar (1982): blind, informed 

and self-regulatory.  In blind training, the O/N strategy would be used with student errors, but 

no reason for the application of such a strategy would be given.  In informed training, O/N 

would be used with student errors, and students would be encouraged to reflect on the 

potential use of the strategy in other domains with other areas of difficulty.  In self-regulatory 

training, the theoretical basis of O/N would be shared with students to provide a clear 

rationale for the value of such a strategy to aid their own learning.  The Conceptual Mediation 

program is a self-regulatory metacognitive training program in which O/N is presented as a 
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key “remedial” strategy.  The program takes the form of a communication with students, 

sharing with them ideas on what is empirically known about attention, memory, and learning, 

or more specifically, remembering and forgetting.  Because the program discussed basic 

psychological concepts and principles, it takes the form of a “psychology for children” 

program. 

 Recognition and recall memory.  The first component of the metacognitive training 

within CMP focuses on remembering.  It is generally accepted that the process of 

remembering is a result of two memory systems: recognition memory and recall memory.  

The difference between recognition memory and recall memory can be made explicit by 

examining the tasks performed by subjects in psychological experiments.  In typical recall and 

recognition tasks, subjects are required to learn and remember lists of words.  In recall tasks, 

subjects are required to remember as many studied words as possible after a given  time.  In 

recognition tasks, the word lists often comprise paired lists of words; one word invoking the 

memory of its pair.  Subjects essentially have to be able to recognise whether certain words 

have been presented to them in the given context (Houston, 1991).   

 In the metacognitive training component of CM program, the terms recognition and 

recall memory presented to the students, and differentiated.  Recognition memory is described 

as being externally activated and automatic which is prompted by some sensory input.  Recall 

memory is different, as it is the memory that is utilised to remember something that is not 

present.  the key difference between recognition and recall memory is that recall memory is a 

self-initiated event which operates at either the automatic level or effortful level.  That is, a 

memory can be retrieved automatically, or it will require a certain amount of effort for 

retrieval.  It is suggested to students that to take control of the remembering process is to store 

information in automatic recall memory where retrieval is self-initiated, rather than externally 

stimulated.  In order to do this, and thus take control of the remembering process, practise is 

essential.  Efficient practise strategies are an essential component for overcoming academic 

learning difficulties (Derry, 1990). 

 Natural and accelerated forgetting.  The second component of the metacognitive 

training within the CM program focuses on forgetting.  Two types of forgetting are discussed 

with students.  It is suggested to students that forgetting can be either natural or accelerated.  

Natural forgetting occurs over time, as skills/knowledge learnt are not practised.  As 

suggested by Anderson (1985), a skill that is not practised becomes victim to the process of 

natural forgetting.  In contrast, accelerated forgetting is described to students as very rapid 

forgetting.  In the metactognitive training program the term proactive inhibition is introduced 

to students as an information protection mechanism, and O/N is demonstrated as a strategy for 

overcoming PI and taking control of accelerated forgetting.  The notion of accelerated 

forgetting is presented to students as a natural brain process; a process which occurs when 

learning a new way of doing something conflicts with an already learned procedure for doing 

the same thing.  

 In summary, the key points of the metacognitive training component within the CM 

program, which form the basis of the communication with students, are as follows: 

 1.  Sometimes learning seems easy and sometimes it seems hard.  Learning seems hard 

because it is paying attention, remembering and understanding that we find hard. 

 2.  When we pay attention to particular things, we learn.  We choose the particular 

things to which we pay attention.  Paying attention is hard because it requires effort. 

 3.  We have two memory systems: recognition and recall.  Recognition memory 

happens naturally without effort.  On the other hand, recall memory is naturally effortful.  

Recall memory can be either automatic or effortful.  Recall memory only becomes automatic 

through practise. 
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 4.  We have two forgetting processes: natural and accelerated.  We can take control of 

natural forgetting through use of efficient practise strategies.  We can take control of 

accelerated forgetting by using the Old Way/New Way strategy. 

 Central to CM program is the notion that the brain is designed to forget.  It is this key 

phrase: the brain is designed to forget which provides a rationale for the importance of 

teaching students how to remember.  The purpose of CM program is to inform students on 

how their own brain works so that they can take control of their own learning.  Throughout 

the program, the continual emphasis is on the fact that learning is a result of effort, and the 

effort must come from the individual.  Making students aware of the process of remembering, 

learning and forgetting may be part way to answering Norman’s (1980) statement: 

It is strange that we expect students to learn yet seldom teach them about 

learning.  We expect students to solve problems yet seldom teach them about 

problem solving.  And, similarly, we sometimes require students to remember 

a considerable body of material yet seldom teach them the art of memory. (p. 

97) 

Concluding Comments 

 The Old Way/New Way methodology offers a specific strategy for dealing with the 

protective influence of PI over knowledge change and growth.  Conceptual Mediation offers a 

metacognitive training component to help learners take control of their own learning.  

Superficially, O/N may appear to be the means of replacing one mode of behaviour with 

another; of replacing a habit with a habit.  Indeed, O/N was originally developed for use in 

overcoming habitual behaviours at the “rote” end of the scale, such as spelling errors, letter 

reversals, body mannerisms.  Several studies have been conducted using O/N and CM within 

intervention programs in mathematics, and whole class mathematics teaching, including 

upper-primary students’ computational procedures in subtraction (Baxter & Dole, 1991; Dole, 

1993), post-compulsory students’ mathematical computations in basic mathematics courses 

(Dole, 1995), junior-secondary students’ understanding of percent increase (Dole, 1999).  In 

these studies, it was found that O/N was superior in correcting students’ systematic errors in 

computation and in promoting students’ confidence and self-esteem; it was efficient in terms 

of teacher time and effort, and students also appeared to readily make links between 

computational and conceptual knowledge.  Other research has shown O/N to be successful in 

changing students’ alternate Science conceptions in whole class situations (Rowell, Dawson 

& Lyndon, 1990).  Thus the theoretical basis of O/N appears to relate equally well to 

misconceptions, alternative conceptions and inappropriate knowledge as it does to error 

patterns. 

 The Conceptual Mediation Program can easily fit within a constructivist framework of 

learning and acquiring knowledge.  CM offers a strategy for accelerating the process of 

conceptual change, and aligns current trends in mathematics intervention research that 

acknowledges the potential of errors/misconceptions as starting points for intervention 

programs.  CM offers a psychological perspective on the nature of errors/misconceptions, and 

thus provides a further dimension to the misconceptions jigsaw. 
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